学习通心理健康教育章节答案()
黄民烈团队:我们训练模型的数据都是真实世界数据,隐私和伦理是我们会首要考虑的。我们的真实世界数据在收集过程中,机构和咨询师会取得来访者的许可。取得数据时,我们的数据已经被脱敏过,所以在这个层面上很大程度能避免隐私泄露。
我们现在的数据来源不光是心理咨询,还有很多其他非心理咨询的数据来源。我们尽可能地确保我们的数据能够覆盖所有人群样本和大部分人们可能遇到的议题。
因此,我们在做数据标注时,会对所有可能的维度进行一个更精细的标注,然后,在使用样本数据时,尽可能地去避免样本偏差。但是必须承认是不可能完全避免偏差,需要注明的一点是,用于临床的机器人是有适应症或人群限定的,我们不期待用一个数据源去面对所有年龄段的所有来访者的种类。
36氪:请您介绍聆心智能目前取得NMPA批准情况。您是如何展望数字疗法后续的监管发展及政策变化?
黄民烈团队:我们目前已经开始在做临床实验,后续去取得医疗机械认证。
我们对政策很乐观,认为趋势和节奏会越来越快。美国心理健康机器人Woebot已取得FDA认证,海外的趋势肯定也会促进国内的监管政策发展。同时,国家正在大力推行社会心理服务体系,比如我国北京、海南都已设立数字疗法认证中心,而我们的方向是这个大体系下非常重要的环节,能够普惠大众。
当然,我们可能需要一点时间,让监管完成对各方面风险评估,但因为数字疗法的副作用当前来看会非常小,甚至可以认为几乎没有,所以数字疗法跟其他治疗比如传统药物相比,获得监管认可的速度会更快。
也正是政策的利好与支持,也希望行业内的同仁们,真正从实践中发现临床价值,而不是纯粹为了逐利,每一件事都做深做扎实做到真正询证有效,但凡是真正惠及于民的有用有效的产品,才能促进行业标准、规范、监管体系的形成,真正促进一个行业的大发展。
03关于自然语言处理
36氪:您如何理解自然语言领域里面,关于可信AI最常提到的,算法可解释性、算法鲁棒性等方面的局限?
黄民烈团队:关于可信人工智能,学术界一直在做相关的研究,也取得了一些可喜的进展。
比如在安全方面,我们最近就在做关于对话系统安全性的研究,让对话AI拥有价值观和更多伦理知识,让人工智能知道什么是对的、什么是错的。比如说,让AI知道不要冒犯用户、知道自杀是不好的、知道什么是真善美等等。
让人能安全信任,也包括算法的可解释性。因为现在AI算法绝大多数是个黑箱,使得我们对于算法到底是如何做出决策,缺乏足够了解。这很大程度限制了我们的算法和模型应用场景,尤其是在医疗领域。在聆心智能的研究里边,不论是情绪情感支持机器人,还是筛查/辅助诊疗算法等方面,都将算法的可解释性考虑在内。我们的可解释性主要体现在,AI的决策始终与其所担任的角色行为逻辑保持一致。我们通过知识图谱将心理医生专业知识中的关键概念对齐起来,从而知道人工智能算法的决策是如何生成的。在这方面,我们还在持续探索、还要持续进步。
在语言理解方面,多一个词、少一个词,可能识别出来的类别就会有很大的区别,这就是所谓的鲁棒性问题。我们也有相应的算法研究和技术解决方案。在语言生成方面,可能用户输入稍微有点变化,但生成的结果就变得千差万别,这也是AI模型的鲁棒性问题。
36氪:您是如何理解人类及人工智能的关系——如何理解独立AI以及辅助性AI?独立AI和辅助性AI只是技术上的成熟度差异所带来的阶段性差异,还是基于什么根本性变量产生区别?
黄民烈团队:我个人认为是独立AI和辅助AI是基于应用场景风险特征来划分的。有一些应用存在很高的风险,一旦犯错代价会非常大;另外一些场景应用的风险容忍度会更大。比如在医疗诊断领域,我们能做的都是辅助性AI,因为一旦诊断错误,伦理风险及代价会非常高——即便是模型准确率达到百分之九十五以上,就能做独立诊断吗?这个首先在监管上就过不去了。再比如说,现在刷脸的独立AI准确率已经达到99%以上,我们可能也未必敢直接用刷脸支付,可能还需要辅助认证手段,比如做一些动作,如眨眨眼、摇摇头之类的。